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Hippocampal replay recapitulates wake experiences

The directionality of replay is context-dependent

Replay of remote & novel shortcut trajectories
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What is the nature of hippocampal replay?
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Animal data Simulation results Accounts for the data?
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Reverse replay
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The cue context influences the directionality of replay by biasing which experience will be reactivated first

Increase in forward replay during sleep

Simulation results Accounts for the data?

Examples of sequences replayed by CRM

Animal data
Gupta et al,, 2010
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Where the animal rests

enables CRM to replay coherent non-local trajectories

Goal: Wakeful behavior:

Rest/sleep:
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Learns to predict the outcome of acting
in each state in order to behave adaptively

Why is replay sequential? Ex

Favors forward replay

Record each local transition and its outcome
as a separate experience
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Replay wake experiences to update existing value expec-
tations, which may result in a new behavioral policy
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EVB[e] = Need (i.e., expected visitations of the target state) * Gain (i.e., expected increase in return at the target state)

(Mattar & Daw, 20 J)\ Favors backward replay

Animal data Simulation results Accounts for the data?
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The influence of experience on replay

Replay over-represents rewarding experiences

Our proposal: Replay as context-driven memory reactivation

Woakeful behavior:
Context-replay model (CRM)

Context
Retrieve experiences’ ec e Retrieve experiences
associated contexts |\ M M associated with
a given context
Experience

Based on the temporal context model (Howard & Kahana 2002)

The model associates each experience with its context
y updating the two associative matrices
at a rate that is modulated by the saliency of an experience

Rest/Sleep:

Why is replay sequential?
Context evolves recursively to guide reactivations

c0 (cue context)
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A cue context (i.e., the animal’s resting state, or a random state

during sleep) evolves to guide sequential, stochastic reactivations.
. We hypothesize that repeated experience leads to
increasing inhibition of task-relevant states in the cue context.
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es are reactivated more ly due to their elevated encoding rate

Animal data Simulation results Accounts for the data?
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Whereas the EVB-RL model predicts a sharp drop in the proportion backward replay as learning reduces gain

Conclusions

Reward uniquely modulates reverse replay

We propose that, during wakefulness, animals associate experiences with the contexts in which they are
encoded, in a manner modulated by the salience of each experience. During periods of quiescence,
replay emerges when contextual cues trigger a cascade of reactivations driven by the reinstatement of
each memory’s encoding context, which in turn facilitates memory consolidation.

Our theory unifies numerous replay phenomena, including findings that reinforcement learning models
fail to account for.
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The elevated encoding rate of the final experience allows its encoding context
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