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Abstract

■ Our understanding of the world is shaped by inferences
about underlying structure. For example, at the gym, you might
notice that the same people tend to arrive around the same
time and infer that they are friends that work out together. Con-
sistent with this idea, after participants are presented with a
temporal sequence of objects that follows an underlying com-
munity structure, they are biased to infer that objects from the
same community share the same properties. Here, we used
fMRI to measure neural representations of objects after tempo-
ral community structure learning and examine how these rep-
resentations support inference about object relationships. We
found that community structure learning affected inferred
object similarity: When asked to spatially group items based
on their experience, participants tended to group together
objects from the same community. Neural representations in

perirhinal cortex predicted individual differences in object
grouping, suggesting that high-level object representations
are affected by temporal community learning. Furthermore,
participants were biased to infer that objects from the same
community would share the same properties. Using computa-
tional modeling of temporal learning and inference decisions,
we found that inductive reasoning is influenced by both
detailed knowledge of temporal statistics and abstract knowl-
edge of the temporal communities. The fidelity of temporal
community representations in hippocampus and precuneus
predicted the degree to which temporal community member-
ship biased reasoning decisions. Our results suggest that tem-
poral knowledge is represented at multiple levels of abstraction,
and that perirhinal cortex, hippocampus, and precuneus may
support inference based on this knowledge. ■

INTRODUCTION

The world is richly structured in many ways that may help
guide decision making; however, this structure is not
always directly observable and must often be inferred
based on limited data. The sequence in which events
occur may be an important factor in providing clues about
underlying structure (Varga, Morton, & Preston, in press;
Gershman, Monfils, Norman, & Niv, 2017; Schapiro,
Rogers, Cordova, Turk-Browne, & Botvinick, 2013). For
example, when at the gym, you might notice that a group
of people tend to enter near the same time. Based on this
observation, you might infer that they are friends that
work out together. This inference of membership within
a friend group could then be used to support further rea-
soning; for example, if you learn that one member of the
group is a student at a local university, you might then

assume that other members of the group also go to that
university. In this way, knowledge about temporal statis-
tics may influence reasoning about nontemporal structure
in the world.
Recent studies have used a temporal community struc-

ture paradigm to examine learning of latent structure
through statistical learning (Schapiro, Turk-Browne, Norman,
& Botvinick, 2016; Schapiro et al., 2013) and determine
how this learning may affect reasoning (Pudhiyidath,
Roome, Coughlin, Nguyen, & Preston, 2019). In the tem-
poral community structure paradigm, participants are
presented with sequences of items that are generated
according to an underlying network structure that defines
connections between items (Figure 1A). After presenta-
tion of each item, any other connected item may be
presented next with equal probability. Items within a
community are interconnected, and there are only sparse
connections between communities; as a result, items in
the same community tend to appear nearby in time to
one another (Figure 1B). After observing item sequences,
participants are more likely to report perceived event
boundaries at transitions between communities, indicat-
ing that they have learned about the latent community
structure of the items (Schapiro et al., 2013). Learning of
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temporal community structure also biases subsequent
inductive reasoning about items (Pudhiyidath et al.,
2019). After presentation of item sequences generated
based on a temporal community structure, participants
were told a property of a cue item (e.g., that it likes the
desert) and asked to decide which of two other items
shares that property. Adults were more biased than chil-
dren to select an item that shared the same temporal com-
munity with the cue item. This result suggests that, in
adults, temporal knowledge about item communities
influenced reasoning about nontemporal properties of
the items (Pudhiyidath et al., 2019). However, the specific
computational and neural mechanisms that support gen-
eralization of temporal knowledge to make decisions in
new contexts remain unclear. Here, we used fMRI and
computational modeling to investigate how temporal
knowledge is represented in the brain and how this
knowledge affects inference decisions.
Computational models of associative learning and

reinforcement learning propose that items that are
presented nearby in time to one another become associ-
ated in memory (Howard & Kahana, 2002; Dayan, 1993;
Raaijmakers & Shiffrin, 1980). Gradual learning of

temporal associations may then allow participants to form
predictions of what items will follow any given presented
item (Schapiro, Turk-Browne, Botvinick, & Norman, 2017;
Schapiro et al., 2013; Gershman, Moore, Todd, Norman, &
Sederberg, 2012) to support efficient decision making
(Momennejad, 2020; Momennejad et al., 2017; Dayan,
1993). Successor representation (SR)models propose that
predictions about upcoming states or items are stored in
an SR that reflects not only one-step transitions but also
longer-range transitions (Dayan, 1993). For any given
item, the SR stores the number of expected future visits
to every other item. Expected visits are discounted based
on the expected delay before visiting them, causing the SR
to emphasize items that will be visited relatively soon.
When an SR model was trained on the temporal commu-
nity structure task, it learned predictive representations
that reflected the community structure, associating items
in the same community more strongly than items in differ-
ent communities (Stachenfeld, Botvinick, & Gershman,
2017). This result suggests that SR learning might be able
to account for influences of community structure on event
segmentation (Schapiro et al., 2013) and inference
(Momennejad, 2020; Pudhiyidath et al., 2019). However,
whereas the SR is sensitive to the community structure,
it also represents other details of the temporal statistics
of the paradigm, such as the connections between com-
munities (Stachenfeld et al., 2017). The SR has been theo-
rized to support formation of compressed representations
that are more abstract (Momennejad, 2020; Stachenfeld
et al., 2017). Therefore, SR learning might support reason-
ing based on community structure either directly through
knowledge of temporal statistics, or indirectly by support-
ing learning of abstract structure (here, the community
membership of each item).

Learning of temporal statistics is thought to be facili-
tated by the hippocampus (Schlichting, Guarino,
Schapiro, Turk-Browne, & Preston, 2017; Schapiro,
Gregory, Landau, McCloskey, & Turk-Browne, 2014),
which has been proposed to encode SRs that reflect pre-
dictions about upcoming states (Brunec et al., 2018;
Stachenfeld et al., 2017). Hippocampal activation patterns
in response to objects reflect the co-occurrence statistics
of those objects: Objects that frequently followed one
another during learning come to have more similar activa-
tion patterns after learning (Schapiro, Kustner, & Turk-
Browne, 2012). Furthermore, recent work suggests that
the hippocampus supports memory performance in statis-
tical learning tasks. Developmental changes in anterior
hippocampus volume predict individual differences in
statistical learning performance across development
(Schlichting et al., 2017), and statistical learning is dis-
rupted in patients with hippocampal damage (Covington,
Brown-Schmidt, & Duff, 2018; Schapiro et al., 2014).
After exposure to sequences of objects generated based
on temporal community structure, patterns of activation
in the hippocampus reflect community membership, with
greater similarity among items in the same community

Figure 1. (A) Temporal community structure with novel 3-D objects
assigned to its 21 nodes. The connections between nodes indicate
which objects may follow one another in succession in a structured
sequence. Nodes are divided into three distinct communities (purple,
red, and green). Darker circles indicate central nodes, that is, objects
that are connected to all other objects in the same community. Lighter
circles indicate boundary nodes, that is, objects that are connected to
the five central nodes and another boundary object in a different
community. The arrows show an example sequence through the
network, starting with the outlined object; arrow color corresponds to
position within the sequence. (B) A structured sequence of objects
corresponding to the path illustrated in (A). For illustrative purposes,
background color corresponds to the node colors in (A). In the actual
experiment, objects were presented on a white background.
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compared with items in different communities (Schapiro
et al., 2016). However, the behavioral relevance of these
community representations remains unclear, as the
relationship between hippocampal community structure
representations and reasoning behavior has not yet been
investigated.

The pFC has also been found to represent community
structure after learning. A previous study found that the
inferior frontal gyrus (IFG) increased in activation as mul-
tiple items from the same community were presented in
succession, suggesting that it is sensitive to community
structure (Schapiro et al., 2013). IFG activation patterns
also reflected community membership, with greater
observed similarity among object presentations from the
same community compared with objects in different com-
munities (Schapiro et al., 2013). However, these results
were observed during presentation of ordered sequences
that visited all objects in the same community in succes-
sion, and IFG activation was sensitive to the position
within these sequences. Therefore, it remains unclear
whether IFG represents the community membership of
individual objects or instead represents a context-
dependent activation pattern reflecting the current
community. There is also evidence that medial prefrontal
cortex (mPFC) is sensitive to community structure.
Although Schapiro et al. did not find evidence that mPFC
activation patterns are more similar for items from the
same community compared with items from different
communities, mPFC activation was increased during a
sequence of object presentations from the same commu-
nity compared with boundaries between communities
(Schapiro et al., 2013). Furthermore, in studies on
prospective memory, the mPFC has been found to repre-
sent intended upcoming tasks (Momennejad & Haynes,
2012, 2013), raising the possibility that it might also repre-
sent predicted upcoming items within a given community.
The mPFC is also functionally and structurally connected
to hippocampus and has been proposed to form low-
dimensional representations of task structure (Morton &
Preston, 2021; Mack, Preston, & Love, 2020; Morton,
Schlichting, & Preston, 2020). These findings raise the pos-
sibility that mPFC may form an abstract representation of
task structure that reflects object community membership.

To examine how neural representations of temporal
knowledge relate to reasoning behavior, we collected
fMRI data in a temporal community structure paradigm.
We first presented participants with sequences of objects
drawn from an underlying temporal community structure
(Figure 1). We then used fMRI to measure neural repre-
sentations of the objects. Whereas prior work measured
object representations during predictable sequences that
followed the community structure of the task (Schapiro
et al., 2013, 2016), here, we measured patterns of activa-
tion elicited by the objects presented in random order
(Figure 2A). This strategy allowed us to measure the
representation of each object separately without any
influence of sequence-based predictions, to determine

whether representations of individual objects reflect
learning of the community structure. We examined
object pattern similarity in hippocampus, IFG, and
mPFC to test whether objects in the same community
were represented more similarly to each other com-
pared with objects in different communities.
We next examined whether neural representations of

community structure predicted decisions that require
making inferences about object similarity and object prop-
erties. Participants were asked to group objects within a
spatial grid based on their experience with the objects,
allowing us to examine whether temporal community
structure learning affected the inferred similarity of the
objects (Figure 2D). We tested whether participants
tended to group together items from the same temporal
community and examined whether this tendency was pre-
dicted by neural representations of temporal community
structure. We also examined whether learning about the
temporal associations of the objects affected inductive
reasoning about object properties (Figure 2B).
During the reasoning task, participants were told a prop-

erty of a cue object and asked to select which of two candi-
date objects shared that property. Each choicewas between
an object in the same community as the cue and an object
from a different community. Critically, there was no “cor-
rect” answer and participants did not receive feedback; this
design allowed us to examine how temporal knowledge
biases reasoning in new situations. Different trials were
designed to examine relationships between objects that
were either directly associated during learning (i.e., directly
connected in the community structure) or only indirectly
associated (i.e., members of the same temporal commu-
nity, but not directly connected to one another in the
structure and therefore not seen together during learn-
ing). Contrasting performance on these different trials
allowed us to determine whether reasoning was related
only to the transition statistics that participants learned
directly, or whether their reasoning was also biased by
inferred associations between objects that were in the
same community but were not connected directly.
To examine the influence of different forms of temporal

knowledge on reasoning behavior, we compared different
models of temporal knowledge based on either SR learn-
ing or abstract knowledge about latent community struc-
ture. Finally, we tested whether neural representations of
temporal community structure in hippocampus, IFG, or
mPFC predicted reasoning performance. Overall, our
approach allowed us to determine how learning about
temporal statistics influences inference-based decision
making in new contexts.

METHODS

Participants

Thirty-nine right-handed volunteers participated in the
experiment (20 women; ages 18–33 years; M = 24.59,
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SD = 4.62). Consent was obtained in accordance with an
experimental protocol approved by the institutional
review board at the University of Texas at Austin. Partici-
pants received monetary compensation for their involve-
ment in the study. Data from two participants were
excluded for excessive movement. Data from the remain-
ing 37 participants were included in all subsequent analy-
ses (18 women; ages 18–33 years; M= 24.68, SD = 4.80).

Stimuli

The stimuli consisted of images of 21 novel, computer-
generated 3-D objects, selected from a larger set of previ-
ously developed object images (Schlichting, Mumford, &
Preston, 2015; Hsu, Schlichting, & Thompson-Schill,
2014). The images of the objects were 400 × 400 pixels.
Object images were chosen to minimize visual similarity

Figure 2. (A) Participants first viewed structured sequences of objects derived from the temporal community structure graph. Next, participants
were scanned during presentations of additional structured sequence blocks, which were intermixed with scrambled sequence blocks in which
objects were presented in a random order that did not follow the temporal community structure. (B) Outside of the scanner, participants performed
an inference task to measure how temporal structure learning affected reasoning about object properties. Participants were told that a cue object was
found in one of three environments (ocean, desert, or forest) and asked to choose which of two objects (shown below the cued object) could also be
found there. For each trial, one of the object choices shared the same temporal community as the cue, and the other object choice did not. There
were three types of trials (central, boundary 1-away, and boundary 2-away), which varied in the degree to which the choice objects were directly or
indirectly connected with the cue object in the structure graph. (C) The parsing task measured subjective perception of event boundaries.
Participants were presented with object sequences that were generated either through a structured walk through the graph or a Hamiltonian walk in
which the nodes were visited one by one in turn. Participants were told to press a button (to indicate an event boundary) whenever they felt a
subjective shift in the sequence. In the example sequence, the object’s background color (not shown to participants) indicates its community; dark
squares indicate central nodes, and light squares indicate boundary nodes. (D) The grouping task measured the learned similarity of the objects and
examined whether temporal knowledge generalized to a spatial grouping task. Participants were shown a grid with the 21 objects they had seen in
the task randomly placed on it and were asked to group the objects based on their experience.
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(e.g., color, shape) between objects. At the outset of the
experiment, participants completed a familiarization task,
wherein they learned the canonical orientation of each
object. On each trial of the familiarization task, an object
was presented for 3 sec. Participants were instructed to
pay close attention to the features and orientation of each
object because they would later be asked to make judg-
ments about object orientation. Between trials, a fixation
cross was shown during an ISI of 0.5 sec. The 21 objects
were randomly ordered, and the random sequence was
presented twice.

Temporal Community Structure

To investigate how temporal statistical learning affects rea-
soning, we presented participants with object sequences
generated based on a temporal community structure
(Schapiro et al., 2013). Each object was assigned to a node
of a 21-node community structure graph (Figure 1A) that
specified the connections among the objects (Schapiro
et al., 2013). The assignment of objects to nodes was ran-
domized for each participant. In the temporal community
structure, there were three distinct communities of
objects that were connected to one another. Within each
of the three communities, there were five central nodes
and two boundary nodes. Each node was connected to
six other nodes. The central nodes were connected to all
the other objects in that community. The boundary nodes
were each connected to all of the central nodes in that
community and to a boundary node from a different
community. The two boundary nodes in each community
were not connected to one another.

The community structure was used to generate struc-
tured object sequences through random walks following
the connections within the graph (Figure 1B). During
structured object sequences, after presentation of an
object, the following object could be any of the six con-
nected objects with equal probability. Central node
objects were always followed by another object in the
same community, whereas boundary objects had a 5/6
probability of transitioning to another object in its own
community and a 1/6 probability of transitioning to
another, connected community. The structured object
sequences thus provided an opportunity to learn about
both the transition probabilities among individual pairs
of objects and the overall latent temporal community
structure.

Learning the Temporal Community Structure

After the object familiarization task, participants viewed
structured object sequences generated from walks
through the community structure (Figure 1). The tempo-
ral structure learning task was divided into two parts. The
first part, which occurred in a quiet testing room, provided
participants with an opportunity to implicitly learn the
underlying temporal community structure. The second

part occurred during fMRI data acquisition, allowing us
to measure how neural representations of the objects
were affected by community structure learning.

Initial Structure Learning

During initial structure learning, each participant viewed a
sequence of the novel 3-D objects. Each object was pre-
sented for 1.5 sec with no ISI. Unbeknownst to the partic-
ipants, the object sequence was generated based on a
temporal community structure (Figure 1). For each partic-
ipant, a structured sequence of 1575 objects was ran-
domly generated following the graph structure; this
sequence was then divided into five runs with 315 object
presentations each. Across the five runs, each object was
presented 75 times, on average (standard deviation: M =
17.39, SE = 1.15), and there were 525 object presenta-
tions from each community, on average (standard devia-
tion: M = 129.94, SE = 10.42). Participants were given a
chance to take a short break after each run. While viewing
the sequence, participants completed an object rotation
detection task. Participants made a response to every
object presented, pressing one button if the object was
in the canonical orientation they had learned during the
familiarization phase or another button if it was in the
incorrect, rotated orientation. Rotated object images were
rotated 90° counterclockwise from the canonical image.
Unbeknownst to participants, objects were rotated when
the current object was the same as the object presented
two steps back. At the end of each run, participants were
given feedback about their accuracy in the rotation detec-
tion task before they moved onto the next run. To con-
firm that participants were consistently attending to the
object presentations, performance on the rotation detec-
tion task for each run was assessed using d0. For each par-
ticipant and run, we tested whether performance was
above chance using a permutation test. On each of
10,000 iterations, the responses were permuted and d0

was calculated based on the permuted responses. We
then calculated a p value based on the permutation distri-
bution to test whether performance was above chance on
each run. To assess whether fatigue affected performance
during later runs, we also tested whether d0 varied across
runs using a one-way repeated-measures ANOVA.

Scanned Structure Learning

Next, participants continued viewing object sequences
and performing the rotation detection task while undergo-
ing fMRI scanning, allowing us to measure the neural rep-
resentations of the objects after exposure to the temporal
community structure. Participants completed six func-
tional scanning runs, each lasting approximately 10 min.
Unbeknownst to participants, each run was divided into
structured and scrambled blocks. Structured blocks were
generated based on the temporal community structure
graph, as in the initial community structure learning
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phase. In contrast, scrambled blocks did not follow the
temporal community structure (Figure 2A). During
scrambled blocks, each of the 21 objects was presented
in random order. These scrambled blocks allowed us to
measure the neural representation of each object while
controlling for effects of temporal autocorrelation
(Purdon &Weisskoff, 1998), which were confounded with
community structure during the structured blocks.
Furthermore, prior work found that neural activation
varied when multiple objects from the same temporal
community were presented in succession (Schapiro
et al., 2013). Here, we used the scrambled blocks to
examine individual object representations in the absence
of systematic order effects and determine how they have
been shaped by temporal community learning.
Each of the six runs contained seven blocks of 21 objects

each, including five structured blocks and two scrambled
blocks, for a total of 147 object presentations per run.
Across the six runs, each object was presented 42 times,
on average (standard deviation: M = 9.32, SE = 0.58),
and there were 294 object presentations from each com-
munity, on average (standard deviation: M = 65.40, SE =
5.54). Each object presentation lasted for 1 sec, during
which participants pressed one button to indicate that
the object was in the canonical orientation or another
button to indicate that the object was rotated from its
canonical orientation. Participants were not given feed-
back about their performance during the scanned phase.
As with the initial structure learning task, we assessed per-
formance on the orientation task by calculating d0. After
each trial, a fixation cross was presented during a 1-, 3-,
or 5-sec ISI. There were an equal number of ISIs of each
length in each run, with the order of ISI lengths random-
ized. Each run began and ended with 4 sec of fixation.
Within each run, the scrambled blocks occurred as either
the third and sixth blocks (Schedule 1), or as the second
and fifth blocks (Schedule 2); the block order started with
Schedule 1 and alternated across runs. The start of each
structured block followed the temporal community graph,
based on the object presented previously. All participants
were given a short break (approximately 10 min) after
completing the first three runs in the scanner to avoid
fatigue, after which they returned to the scanner to com-
plete the final three runs.

Assessing Knowledge of Temporal
Community Structure

After the scanned structure learning phase, a series of
behavioral tasks assessed knowledge of the temporal
statistics of the objects and examined how temporal
knowledge affects decisions that rely on inference. We
measured temporal knowledge using a parsing task that
characterized whether temporal community structure
affected event segmentation. We further examined
whether temporal knowledge was generalized to a spatial
grouping task, which assessed the subjective similarity

of the objects. Finally, we tested whether temporal statis-
tical learning affected reasoning using an inductive
inference task. To avoid influences of the other tasks on
inductive inference, the inductive inference task was com-
pleted first, followed by the parsing task and the spatial
grouping task.

Parsing Task

The parsing task allowed us to assess whether temporal
community structure learning affected perception of
event boundaries. In this task, participants were shown
object sequences and told to press a button (i.e., parse
the sequence) whenever they believed that there was a
“shift” in the object sequence (Figure 2C; Schapiro et al.,
2013). Participants were told to use their intuition and to
refer to their experiences thus far in the experiment to
determinewhere shifts might be occurring. Based on prior
work (Schapiro et al., 2013), we predicted that participants
would be more likely to make a parse response after
transitions between communities.

During the parsing task, participants viewed object
sequences, which were divided into three runs of
252 objects. Each object was shown on the screen for
1.5 sec, with no ISI between objects. Each run contained
12 blocks with 21 objects each. Each block was either a
random walk through the temporal graph structure (i.e.,
a structured sequence like those encountered during
structure learning) or a Hamiltonian walk (Figure 2C).
In Hamiltonian walks, participants saw each object in
the graph in a sequential order that followed the outer
edges of the graph. Within each run, blocks alternated
between random walks and Hamiltonian walks, starting
with a random walk. Each Hamiltonian walk was ran-
domly selected to follow either a predetermined forward
order or a backward version of the same walk (Schapiro
et al., 2013). These Hamiltonian paths were included to
ensure that parsing responses could not be solely
explained by changes in the temporal statistics of object
presentations, as each object was only presented once in
each block. In contrast, during random walks, objects in
the same community are more likely to repeat in rela-
tively quick succession, whereas objects in a new com-
munity likely have not been observed recently. As a
result, parsing responses might occur more frequently
after community transitions because of object novelty
rather than knowledge about temporal structure.

Tomeasure the influence of temporal community struc-
ture on event segmentation, we examined the probability
of making a parse response after a transition from one
community to another. Following prior work (Schapiro
et al., 2013), we counted a community transition only after
there had been at least four objects presented from the
same community in succession, in case participants were
disinclined tomake parse responses in close succession to
one another. We compared the probability of parsing on
these community transition trials (i.e., when there were at
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least four trials with objects in the same community,
followed by presentation of an object in a different
community) compared with the probability of parsing on
other trials. We calculated this difference in parsing
probability separately for the structured and Hamiltonian
blocks. The difference in parsing probability between
community transition trials and other trials served as a
measure of knowledge of the temporal community
structure.

Grouping Task

In the grouping task, participants were asked to group
objects within a spatial grid based on their experiences
in the study. The grouping task involved inferring the rel-
ative strength of the relationships among all the objects,
based on limited information obtained during the tempo-
ral structure learning task. This task thus allowed us to
assess whether temporal knowledge influenced inference
behavior in a spatial task. Participants were shown a 19 ×
11 rectangular grid on a computer screen, with the 21
objects uniformly and randomly dispersed across its coor-
dinates (Figure 2D). Participants were instructed to use
the computer mouse to group the objects on the grid.
They were asked to group the objects based on their intu-
ition and what they had witnessed thus far in the experi-
ment and were instructed to not use the physical similarity
of the objects to guide their responses. To group the
objects, participants clicked on an object and then clicked
on the space on the grid where they wanted to move
it. Participants were given as long as they needed to
complete the task.

Using the final positions of the objects, we calculated
the Euclidean distance between objects in the same com-
munity and objects in different communities. We hypoth-
esized that the spatial distances between objects would
reflect the temporal community structure, with shorter
distances between objects in the same community. We
found that there was substantial individual variability in
how participants used the grid to separate groups. For
example, some participants placed groups in different
corners of the grid, whereas others placed all objects in
a small area, using less than a third of the grid. Therefore,
we focused mainly on the distances among objects in the
same community, which are less sensitive to individual
differences in the strategy used to separate groups.

Inductive Inference Task

During the inductive inference task, we tested whether
learning of the temporal relationships between objects
influenced reasoning about properties of the objects. Spe-
cifically, participants were told the habitat where a cue
object is found (ocean, desert, or forest) and then were
asked to infer which of two different choice objects shared
the same habitat as the cue (Figure 2B). On each inference
trial, the cue object appeared at the top of the screen with

a statement about its environment (e.g., “This object
above is found in the FOREST.”), with the two choice
objects shown at the bottom of the display. Unbeknownst
to the participants, the stated habitat of each cue object
corresponded to the community it belonged to in the
graph structure. On each inference trial, one of the
choices was another object from the same temporal
community as the cued object, whereas the other choice
was an object from a different community to the cued
object. This task structure allowed us to examine whether
participants were biased to infer shared properties among
objects from the same community. On each trial, partici-
pants were given 8 sec to select one of the two choice
objects with a button press. After the participant responded,
a fixation cross was presented for 0.5 sec, followed by
the next trial.
Each participant completed 42 inference trials. Each

of the 21 objects was used as the cue object on two trials.
Inference trials were divided into three different
trial types: central, boundary 1-away, and boundary 2-away
(Figure 2B). These trial types were designed to examine
both the influence of knowledge about individual transi-
tions between object pairs (i.e., the frequency with which
a pair of objects was adjacent in the sequence) and the
influence of abstract knowledge about the temporal com-
munity structure (i.e., whether two objects were in the
same community or different communities). On each of
the 30 central inference trials, each of the objects was a
central node within the temporal graph structure. Partici-
pants were given a choice between (1) a central object in
the same community as the cue and (2) a central object
from a different community. The central trials therefore
involved choosing between an object that was directly
connected to the cue and in the same community, and
an object that was only indirectly connected and in a dif-
ferent community.
In contrast, the boundary trials controlled for direct

associations between objects while examining whether
participants were influenced by knowledge of the commu-
nity structure. In the six boundary 1-away trials, the cue
object was a boundary node in the community graph,
and the choice objects were both directly connected to
the cue object in the graph (i.e., they were one connection
away from the cue object). Participants chose between (1)
a central object from the same community as the cue and
(2) a boundary object from a different community. Finally,
there were six boundary 2-away trials, in which the cue
object was a boundary node and the choice objects were
only indirectly connected to the cue object in the graph,
with a minimum path length of two connecting the cue
object to each of the choice objects. Participants chose
between (1) the other boundary object in the same com-
munity as the cue and (2) a central object in a different
community. Notably, on boundary 2-away trials, neither
choice object was directly associated with the cue item;
as a result, any temporal bias observed on these trials
could not be based on direct associations.
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For each trial type, we examined whether participants
were biased by the temporal community structure to infer
that objects in the same community were from the same
environment. Wemeasured this bias using a temporal bias
score defined as the proportion of trials for which the par-
ticipant selected the same-community object minus the
proportion of trials for which the participant selected
the different-community object. A bias score of 1 indicates
maximum bias toward inferring shared properties among
same-community objects, whereas a bias score of 0 indi-
cates no temporal bias. Given the relatively small number
of inference trials, we did not anticipate that inference
decisions would be affected by learning of the environ-
ment associated with each cue object. Nevertheless, to
confirm that inference decisions reflected prior structure
learning rather than learning during the inference phase,
we tested whether temporal bias varied with time during
the inference task. If learning did occur during the infer-
ence task, then performance would increase during later
trials. We divided the 42 inference trials into six bins of
seven trials each, and used a one-way repeated-measures
ANOVA to test whether temporal bias (collapsed over trial
types) varied with trial bin.

Modeling of Temporal Bias in the Inference Task

To better understand how participants make inductive
inferences about shared object properties, we simulated
inference task performance using different competing
models. The inductive inference task examined the effects
of direct associations and indirect associations, allowing us
to contrast different forms of temporal knowledge that
might bias reasoning decisions. Each model assumed that
inference of shared object properties was proportional to
the strength of association of the objects in memory. We
considered two models of association strength: SR and
community membership. The SR stores the temporally
discounted expected frequency with which each object
would be visited, conditional on a given object having
been presented (Momennejad, 2020; Dayan, 1993). The
SR was initialized as an n × n matrix of zeros, where n is
the number of objects. The SR was then updated using
temporal difference learning during presentation of object
sequences during the structure learning task, according to

M sð Þ ¼ M sð Þ þ α onehot snewð Þ þ γM snewð Þ−M sð Þð Þ (1)

whereM(s) is the SR for state s, α is a learning rate param-
eter (0 ≤ α ≤ 1), γ is a discount parameter (0 ≤ γ ≤ 1) that
determines the predictive horizon of the SR, and onehot
(snew) is a vector of all zeros with a 1 for successor state
snew. We simulated learning through the five runs of the
initial structure learning and the six runs of the scanned
structure learning tasks, updating the SR based on the
object sequences presented in each run. Note that, in
the scanned structure learning tasks, the scrambled blocks
may cause some unlearning of the community structure;

this unlearning was accounted for in the model. To exam-
ine how the model parameters affected the SR, we simu-
lated SR learning using a range of values for the α and γ
parameters, based on the object sequences presented to
a sample participant (Figure 3). Community structure after
learning was most apparent when α was low, suggesting
that gradual learning is important for detection of the
underlying community structure. Based on these results,
and following prior work (Stachenfeld et al., 2017), we
fixed α= .1. The learned SR also varied based on the value
of γ (Figure 3). With γ = 0, only individual transitions are
learned; as a result, indirect associations like those
between the boundary items in a community are not
reflected in the SR after learning. In contrast, with higher
values of γ, both central and boundary items in the same
community are associated with one another (Figure 3).

We compared the SR model of object associations with
a model that assumed that, after community structure
learning, objects become associated with an abstract,
reduced-dimensionality representation of the community
structure. Abstract representations, which discard details
of individual items to focus on common structure, have
been theorized to guide decision making in a range of
tasks, including associative inference, spatial navigation,
and category learning (Varga et al., in press; Mack
et al., 2020; Morton et al., 2020; Stachenfeld et al.,
2017). Here, we assumed that an abstract representation
of the temporal community structure would focus on the
community membership of each item, while discarding
other details, such as whether two objects were directly
or indirectly connected. We modeled the influence of
abstract community representations on decision making
by assuming that objects within the same community
were associated (with strength 1) in an association matrix
W and objects in different communities were not associ-
ated (strength 0). In this model, boundary items in the
same community were just as strongly associated with
one another as they were to central items, and boundary
items in different communities were not associated at all
(Figure 5C).

We simulated the inference task based on the associa-
tion strengths between the cue object i and the two choice
objects j and k on each trial. The probability of choosing an
object j was based on a Softmax choice rule, according to

P object j j cue ið Þ ¼
exp A i; jð Þ

τ

� �

exp A i; jð Þ
τ

� �
þ exp A i;kð Þ

τ

� � (2)

where A=M for the SR model, A=W for the community
model, and τ is a temperature parameter. The τ parameter
controls whether the object with highest association
strength is selected with high probability (low τ) or
whether responses are made more probabalistically, with
both objects being selected equally often at high τ. For
each model, we calculated the overall log-likelihood of
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the inference data by summing the log-transformed
response probabilities across all trials.

We also considered a hybrid model where both SR
and community strength matrices could contribute to
inference decisions. A weight parameterwn, where n indi-
cates the trial type, determined how strongly each matrix
was weighted in determining inference responses:

A ¼ wnM þ 1−wnð ÞW (3)

We hypothesized that the strength matrices might be dif-
ferentially recruited on different trial types. For example,
onemight first retrievememories of temporal associations
(stored in the SR matrix), and only retrieve abstract com-
munity associations if no strong temporal associations are
found in memory. In this case, abstract community associ-
ations would be most important on the boundary 2-away
trials, wherein the cue was not directly associated with
either of the object choices. To allow for such a possibility,
in our model fits, the w parameter was estimated for each
trial type separately.

Models were implemented in the publicly available
Tesser package (Morton, Pudhiyidath, Viveros Duran,
Hinojosa-Rowland, & Momennejad, 2021) using Python
3.7.6 with Numpy 1.18.1 (Harris et al., 2020) and Cython
0.29.23 (Behnel et al., 2010). We estimated model param-
eters using a differential evolution parameter search

(Storn, 2008; Storn & Price, 1997) implemented in Scipy
1.4.1 (Virtanen et al., 2020), to estimate parameters that
maximized the likelihood of the observed inference
responses. The parameter search used the best1bin strat-
egy (absolute tolerance = 0, relative tolerance = 0.01,
mutation constant = [0.5, 1], recombination constant =
0.7) with a population of 15 for each parameter being
searched and Latin Hypercube initialization. After the
initial differential evolution search, the best-fitting
parameters were refined using the limited-memory
Broyden–Fletcher–Goldfarb–Shanno algorithm with
bound constraints (L-BFGS-B; Byrd, Lu, Nocedal, & Zhu,
1995). Each search was run 10 times with different
random starting parameters, and the best-fitting parame-
ters were selected across the different searches. Best-
fitting parameters were then used to determine the fitted
probability for each trial to select the within-community
object. The temporal bias for each trial was calculated as
2( p(within) − 0.5) to obtain a measure, where 1 indi-
cates complete temporal bias toward inferring common
properties for objects in the same community, 0 indicates
no temporal bias, and−1 indicates a bias toward inferring
common properties for objects in different communities.
Finally, we compared the SR, community, and hybrid

models based on their log-likelihood and the number of
free parameters in each model, using the Akaike informa-
tion criterion (AIC; Akaike, 1998). AIC prefers models with

Figure 3. SRs after learning given different values of the α and γ parameters, after simulation of the object sequences viewed by an example
participant. Within each SR, each row shows the expected count of future object presentations, discounted based on the discounting factor γ, for a
given starting object. Circles indicate the object community (red, purple, green) and whether each object is a central node (dark) or boundary node
(light). For display purposes, each matrix was divided by the maximum value in that matrix. We found that the clearest learning of the community
structure appeared for relatively low values of α and relatively high values of γ.
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higher log-likelihood and fewer free parameters. We also
calculated AIC weights, which estimate the conditional
probability of each model in a set being the best model,
in terms of minimizing Kullback–Leibler discrepancy
(Wagenmakers & Farrell, 2004).

fMRI Data Collection

Imaging data were collected with a 3 T Siemens Skyra at
the Biomedical Imaging Center at The University of Texas
at Austin. There were a total of six functional scans
acquired using a T2*-weighted multiband-accelerated
EPI pulse sequence (repetition time [TR]: 2000 msec,
echo time [TE]: 30 msec, flip angle: 73°, field of view:
220 mm, 75 slices, 1.7 × 1.7 × 1.7 mm voxels, multiband
factor: 3, generalized autocalibrating partially parallel
acquisitions (GRAPPA) factor: 2, phase partial Fourier:
7/8). A single-band reference (SBRef ) image was also col-
lected at the start of each EPI scan to aid in alignment to
anatomical scans. A fieldmap (TR=628msec, TE=5msec/
7.46 msec, flip angle = 5°, 64 slices, 1.7 × 1.7 × 2 mm
voxels) was collected before the first functional scan to cor-
rect for distortions in themagnetic field in functional scans
1–3. A second field map was collected after the break and
used to correct for distortions in functional scans 4–6.
Two oblique coronal T2-weighted (T2w) structural images
were acquired perpendicular to themain axis of the hippo-
campus (TR: 13150 msec, TE: 82 msec, flip angle: 150°,
60 slices, 0.4 × 0.4 mm in-plane resolution, 1.5-mm
through-plane resolution) to facilitate segmentation of
hippocampal anatomy. These images were coregistered
and averaged to generate a mean coronal image for each
participant. A T1-weighted 3-D magnetization prepared
rapid gradient echo volume was collected (TR: 1900 msec,
TE: 2.43msec, flip angle: 9°, field of view: 256 mm, 192 slices,
1 × 1 × 1 mm voxels) to facilitate alignment and normal-
ization of the functional data.

fMRI Data Preprocessing

Imaging data were converted to Brain Imaging Data
Structure format 1.4.1 (Gorgolewski et al., 2016) using
Heudiconv 0.9.0 (Yaroslav et al., 2020) and custom
Python 3.7.6 scripts (Morton et al., 2021). Preprocessing
of imaging data was performed using fMRIPrep 20.2.1
(Esteban, Markiewicz, Burns, et al., 2020; Esteban et al.,
2018), which is based on Nipype 1.5.1 (Esteban, Markiewicz,
Goncalves, et al., 2020; Gorgolewski et al., 2011).

Anatomical Data Preprocessing

The T1w image was corrected for intensity nonuniformity
with N4BiasFieldCorrection (Tustison et al., 2010), dis-
tributed with Advanced Normalization Tools (ANTs)
2.3.3 (Avants, Epstein, Grossman, & Gee, 2008), and used
as T1w-reference throughout the workflow. The T1w-
reference was then skull-stripped with a Nipype imple-
mentation of the antsBrainExtraction.sh workflow (from

ANTs), usingOASIS30ANTs as target template. Brain tissue
segmentation of cerebrospinal fluid (CSF), white matter
(WM) and gray matter (GM) was performed on the
brain-extracted T1w using fast, distributed with FMRIB Soft-
ware Library (FSL) 5.0.9 (Zhang, Brady, & Smith, 2001). Brain
surfaces were reconstructed using recon-all, distributed with
FreeSurfer 6.0.1 (Dale, Fischl, & Sereno, 1999), and the brain
mask estimatedpreviouslywas refinedwith a customvariation
of the method to reconcile ANTs-derived and FreeSurfer-
derived segmentations of the cortical GM of Mindboggle
(Klein et al., 2017). Volume-based spatial normalization to a
standard space (MNI152NLin2009cAsym) was performed
through nonlinear registration with antsRegistration (ANTs
2.3.3), using brain-extracted versions of both the T1w ref-
erence and the T1w template. The following template was
used for spatial normalization: ICBM 152 Nonlinear Asym-
metrical template Version 2009c (Fonov, Evans, McKinstry,
Almli, & Collins, 2009). Hippocampus was automatically seg-
mented based on both the T1w and averagedT2w scans using
the segmentHA_T2 program from FreeSurfer 7.1.1 (Saygin
et al., 2017; Iglesias et al., 2015).

Functional Data Preprocessing

For each of the six BOLD runs per participant, the follow-
ing preprocessing was performed. First, a reference vol-
ume and its skull-stripped version were generated from
the SBRef scans. A B0-nonuniformity map (or field map)
was estimated based on a phase-difference map calculated
with a dual-echo gradient-recall echo sequence, processed
with a custom workflow of SDCFlows inspired by the
epidewarp.fsl script and further improvements in Human
Connectome Project (HCP) Pipelines (Glasser et al.,
2013). The fieldmap was then coregistered to the target
EPI reference run and converted to a displacements field
map (amenable to registration tools such as ANTs) with
FSL’s fugue and other SDCflows tools. Based on the esti-
mated susceptibility distortion, a corrected EPI reference
was calculated for a more accurate co-registration with
the anatomical reference.

The BOLD reference was then coregistered to the T1w
reference using bbregister (FreeSurfer), which implements
boundary-based registration (Greve & Fischl, 2009). Core-
gistration was configured with six degrees of freedom.
Head-motion parameters with respect to the BOLD refer-
ence (transformationmatrices, and six corresponding rota-
tion and translation parameters) are estimated before any
spatiotemporal filtering using FSL’s mcflirt ( Jenkinson,
Bannister, Brady, & Smith, 2002). BOLD runs were slice-
time corrected using 3dTshift from AFNI 20160207 (Cox
&Hyde, 1997). The BOLD time-series were resampled into
the standard MNI152NLin2009cAsym space with native
functional resolution (1.7 mm isometric).

In addition to head-motion estimates calculated during
motion correction, confounding time-series were calcu-
lated based on the preprocessed BOLD: framewise dis-
placement, DVARS (Power, 2016), and average signals
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within WM and CSF. Framewise displacement was com-
puted as the relative root mean square displacement
between affines (Jenkinson et al., 2002). The confound
time series derived from head-motion estimates and
global signals were expanded with the inclusion of tem-
poral derivatives for each. All resamplings were per-
formed with a single interpolation step by composing
all the pertinent transformations (i.e., head-motion trans-
form matrices, susceptibility distortion correction, and
coregistrations to anatomical and output spaces). Resam-
plings were performed using antsApplyTransforms
(ANTs), configured with Lanczos interpolation to mini-
mize the smoothing effects of other kernels (Lanczos,
1964). Many internal operations of fMRIPrep use Nilearn
0.6.2 (Abraham et al., 2014), mostly within the functional
processing workflow. For more details of the pipeline, see
the section corresponding to workflows in fMRIPrep’s
documentation.

ROIs

Based on prior work examining the neural representation
of temporal community structure, we identified hippo-
campus, IFG, and mPFC as a priori ROIs (Schapiro et al.,
2013, 2016). We defined a hippocampal ROI based on the
automatic FreeSurfer segmentation of the T1w and T2w
anatomical scans for each participant. Participant hippo-
campal head, body, and tail ROIs were transformed to
the MNI152NLin2009cAsym template space using antsRe-
gistration with MultiLabel interpolation, pooled to gener-
ate right and left hippocampus ROIs, and averaged across
participants to create probabilistic masks. We then
thresholded these masks at 0.25 to obtain right and left
hippocampal ROIs in template space.

We defined IFG ROIs based on FreeSurfer segmentation
of the T1w anatomical scans for each participant, including
the pars opercularis, pars triangularis, and pars orbitalis
labels in the ROI for each hemisphere. As for the hippo-
campal ROIs, individual participant ROIs were trans-
formed to template space and averaged to create right
and left probabilistic masks. The masks were then thresh-
olded at 0.1. We followed a similar procedure to generate a
GMROI that included all cortical and subcortical regions of
GM, thresholded at 0.1. AnmPFC ROI was manually drawn
on the MNI ICBM 152 Non-Linear 6th Generation
Asymmetric (MNI152NLin6Asym) template based on pub-
lished definitions of anatomical mPFC (Price & Drevets,
2009; Öngür, Ferry, & Price, 2003). The mPFC ROI in
MNI152NLin6Asym space was then transformed to our
main template space (MNI152NLin2009cAsym) using
antsRegistractionSyN.sh and antsApplyTransforms from
ANTs 2.3.5 (Avants et al., 2010) and intersected with the
GM mask to create the final ROI.

Searchlight Analyses

We used searchlight analyses to examine whether tempo-
ral community structure is represented in the brain during

the scanned part of the structure learning task.We focused
specifically on the scrambled blocks, in which objects
were presented in random order, to control for temporal
autocorrelation and avoid systematic effects of object pre-
sentation order. This approach allowed us to determine
whether the representations of individual objects had
been affected by exposure to the temporal community
structure. First, we used the SUSAN tool from FSL 6.0.4
(Smith & Brady, 1997) to smooth the preprocessed BOLD
images in template space, with a 4-mm FWHM smoothing
kernel. We then used a general linear model to estimate
the pattern of activation that was elicited in response to
each object during the scrambled blocks in each run.
We used Nilearn 0.7.1 and custom Python 3.7.0 code

(Morton et al., 2021) to estimate object patterns using the
least squares–separate approach (Mumford, Turner, Ashby,
& Poldrack, 2012). Object presentations (each modeled
with 1-sec duration) were convolved with a canonical
double-Gamma hemodynamic response function to gen-
erate the predicted response time series for each object,
separately for the scrambled and structured blocks. The
activation of each object in the scrambled blocks was esti-
mated using a separatemodel; modeled responses to other
objects during the scrambled blocks were summed to cre-
ate a single separate regressor. Each model also included
regressors for each object presented during the structured
blocks as regressors of no interest. Models also included 16
nuisance regressors generated by fMRIprep, consisting of
six motion parameters and their temporal derivatives, and
WM and CSF average signals and their temporal derivatives.
Finally, each model included cosine basis functions to
model slow fluctuations at less than 128 Hz. The least
squares–separate modeling resulted in a beta-series esti-
mate of the activation at each voxel for each object in each
run during the scrambled blocks.
We then used a searchlight analysis implemented in Brai-

niak 0.11.0 (Kumar et al., 2020) to test for neural represen-
tations of community structure. Separate searchlights were
carried out for GM, left hippocampus, right hippocampus,
left IFG, right IFG, and mPFC. In each searchlight sphere,
we calculated all pairwise correlations between object pat-
terns estimated based on the scrambled blocks in all runs.
We then defined two bins for within-community and
across-community pairings. The within-community com-
parisons included all pairs that were objects in the same
community, were different objects, and were presented
in different runs. The across-community comparisonswere
the same but only included pairs of objects that were in
different communities. We calculated the mean within-
and across-community similarity and took the difference
between them to obtain a measure of neural community
structure. This neural community structure statistic was
comparedwith a baseline determined using a permutation
test. Objects were randomly permuted the same way for
each run, such that object identity was preserved but com-
munity structure was broken, and the neural community
structure statistic was calculated. This process was
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repeated 1000 times to obtain a null distribution for the
neural community structure statistic. The same permuta-
tion order was used across all searchlight spheres to pre-
serve spatial structure in the permuted data. For each
sphere, the actual statistic was compared with the permu-
tation distribution to obtain a z score. The randomise tool
from FSL 5.0.11 was used to implement a sign-flipping test
with 5000 permutations to determine voxel-level signifi-
cance across participants.
We next examined whether neural community structure,

which would reflect temporal learning, predicted nontem-
poral inference decisions about object grouping and object
properties. We first tested whether neural community
structure predicted performance on the grouping task,
which involved using temporal knowledge to determine a
spatial grouping of objects. To measure correlation
between neural community structure and the grouping
task, we first calculated the average Euclidean distance
between items in the same community in the final object
positions from the grouping task. These distances were
z-scored across participants and multiplied by −1 to
obtain a measure of relative tendency to cluster same-
community objects. We then used randomise to assess
correlation between neural community structure repre-
sentation and community clustering in the grouping task,
comparing actual correlations to a permutation distribu-
tion based on randomly permuting grouping task scores.
The grouping task searchlight allowed us to identify brain
regions that may support inference about object similar-
ity and generalization of temporal learning to a spatial
task. Finally, to identify brain regions involved in inductive
inference about object properties, we assessed correla-
tion between neural community structure and temporal
bias on the inference task. We calculated average tempo-
ral bias for each participant, collapsing across trial types,
and z-scored the bias scores across participants. We then
tested whether there was correlation between neural
community structure representation and temporal bias
using randomise.
To perform cluster correction of the searchlight results

within each ROI, we used AFNI 21.1.07 (Cox, Chen, Glen,
Reynolds, & Taylor, 2017). We first estimated the residuals
from a beta-series model the same as the one used to esti-
mate object patterns, except that all objects were included
in a single model. We then used 3dFWHMx to estimate
parameters of the spatial autocorrelation function for each
run. We averaged these parameters over runs and partic-
ipants to obtain estimated autocorrelation parameters for
each ROI. Finally, we used 3dClustSim to estimate cluster
extent thresholds to control the false-positive rate at 0.05,
using three nearest neighbor clustering, one-sided thresh-
olding, and a voxel-wise threshold of 0.01.

Regression Analysis

We used a Bayesian regression analysis to assess whether
there is a relationship between neural community

structure representations and temporal bias on the infer-
ence task. For each significant cluster from our searchlight
analyses, we first dilated the cluster mask by one voxel. For
each participant, we then extracted the betaseries pattern
within the dilated cluster mask. We then calculated the
mean pattern correlation for items in the same community
and the mean pattern correlation for items in different
communities, using the same similarity bins as used in
the searchlight analysis. Finally, we subtracted across-
community similarity from within-community similarity,
to obtain a measure of neural community representation
for each participant and cluster.

We then used a Bayesian regression to assess whether
temporal bias on any of the test trial types were related to
neural community representation across participants. We
used Bambi 0.7.1 (Capretto et al., 2020) to define a linear
model with weakly informative priors (Capretto et al.,
2020). Regression coefficient priors were defined as

βκ ∼Normal 0; 2:5
sd Yð Þ
sd X κð Þ

� �
(4)

and the prior for the centered intercept was

β0 ∼Normal �Y ; 2:5 sd Yð Þð Þ (5)

where Y is the neural community representation for each
participant, and the Xk predictors are the temporal bias
scores for the central, boundary 1-away, and boundary 2-
away trials.

We used PyMC 3.11.4 (Salvatier, Wiecki, & Fonnesbeck,
2016) to estimate the posterior distributions of the model
parameters. Posterior distributions were estimated using
the No U-Turn Sampler (Hoffman & Gelman, 2014) with
1000 tuning steps, target acceptance rate of 0.8, and four
sampling chains with 2000 samples each. Convergence
was assessed using bulk effective sample size and rank-
normalized split potential scale reduction statistic R̂
(Vehtari, Gelman, Simpson, Carpenter, & Bürkner, 2021).
For each model estimated and each parameter, R̂ was less
than 1.0001 and the bulk effective sample size was at
least 4000. The posterior distributions of regression
coefficients were estimated using the 95% high-density
interval (HDI). For regression coefficients whose 95%
HDI did not include zero, we visualized the relationship
by calculating the regression line based on the intercept
and slopes for each posterior sample and then calculating
the 95% HDI over that sample at each value of the
predictor variable.

Software and Data Availability

Code and Jupyter notebooks implementing the described
analyses, including behavioral analysis, modeling, and
representational similarity analysis, are publicly available
(Morton et al., 2021). Behavioral and neuroimaging
data are also publicly available (Pudhiyidath et al., 2022).
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RESULTS

Performance during Temporal Structure Learning

To assess whether participants consistently attended to the
object sequences during temporal structure learning, we
examined performance on the object orientation task. We
calculated the sensitivity (measured using d0) of detecting
objects that were rotated from their canonical orientation.
Trials in which participants made no response, which were
rare (relative frequency of no response: M = 0.011, SE =
0.002), were excluded from rotation detection analysis.
Two runs (from different participants) were excluded
because of errors in the recording of responses. The aver-
age detection sensitivity across all trials, including both the
initial learning and scanned phases,was high (d0:M=4.023,
SE = 0.110). Detection sensitivity was above chance for
each participant in each run ( p < .001, permutation test).

To test whether fatigue affected performance during
the structure learning task, we quantified whether perfor-
mance varied between runs, either in the initial learning
phase that was not scanned or during the scanned struc-
ture learning phase. We first used a one-way repeated-
measures ANOVA to test whether d0 varied across the five
runs from the initial learning phase. We observed a signif-
icant effect of Run (F(4,144)= 31.90, p<0.001,η2p ¼ 0:47),
with performance increasing during the first three runs
of the initial learning phase. Follow-up t tests of adjacent
runs found significant increases in performance between
runs 1 and 2 (change: M = 0.688, SE = 0.109, t(36) =
6.32, p < .001, Cohen’s d = 0.914, false discovery rate–
Benjamini/Hochberg [FDR-BH] corrected) and runs 2
and 3 (change: M = 0.403, SE = 0.101, t(36) = 3.990,
p < .001, d = 0.591, FDR-BH corrected). There was a
decrease in performance between runs 3 and 4 (change:
M = −0.266, SE = 0.082, t(36) = 3.24, p = .004,
d = 0.411, FDR-BH corrected), but no change between
runs 4 and 5 ( p > .05, FDR-BH corrected). During the
scanned structure learning, performance decreased but
remained high (initial: M = 4.208, SE = 0.096; scanned:
M= 3.903, SE= 0.066, t(36) = 3.60, p< .001, d= 0.950).
There was no change in performance across the six
scanned runs (F(5,170) = 1.79, p = .117, η2p ¼ :050).
Overall, these results suggest that attention was sus-
tained throughout the task, after an initial period of accli-
mating to the task. However, because participants did
vary in their overall performance (d 0 range: 2.044–
5.707), we included overall d0 as a covariate when exam-
ining individual differences in temporal knowledge
expression, to control for individual differences in atten-
tion during temporal structure learning.

Community Structure Predicts Perception of
Temporal Boundaries

Previous work found that exposure to temporal commu-
nity structure affects the perception of event boundaries;
when viewing sequences of objects, participants were

more likely to indicate an event boundary after a transition
between communities (Schapiro et al., 2013). We exam-
ined whether participants in our study exhibited similar
event segmentation behavior during the parsing task. Spe-
cifically, we tested whether participants indicated an event
boundary after transitions from one community to
another, including only transitions that occurred after at
least four consecutive steps into another community
(Schapiro et al., 2013). We used a two-way repeated-
measures ANOVA to examine whether parsing probability
varied between object presentations that occurred at
community transitions and other object presentations
(Figure 4A), and whether parsing depended on sequence
type (Hamiltonian walk or structured random walk). We
observed a significant main effect of Parsing Type (com-
munity transition vs. other; F(1,36) = 15.13, p < 0.001,
η2p ¼ :296); no effect of Sequence Type (F(1,36) = 1.62,

p = .212, η2p ¼ :043); and no interaction (F(1,36) = 0.26,

p= .614, η2p ¼ :007). These results are consistent with pre-
vious work (Schapiro et al., 2013) and demonstrate that
participants perceived transitions between communities
as event boundaries within the object sequence.

Subjective Clustering of Objects Reflects
Community Structure

We next examined whether statistical learning of the tem-
poral associations between objects affected the subjective
similarity of those objects, based on the spatial grouping
task. Although prior work demonstrated that temporal
community structure affects segmentation of temporal
sequences, it remains unclear whether knowledge about
community structure is specific to temporal sequences of
objects, or whether learning also shapes knowledge about
the objects themselves. To test for an influence of commu-
nity structure learning on the grouping task, we calculated
the mean Euclidean distance between objects for within-
community object pairs and across-community object pairs
(Figure 4B).We found that within-community objects were
grouped closer together than across-community objects
(t(36) = 4.56, p < .001, Cohen’s d = 0.854). This result
suggests that temporal community structure affects not
only perception of temporal sequences, but also affects
the subjective similarity of objects. Furthermore, our
results demonstrate that object community membership,
which was initially learned through exposure to temporal
sequences, influenced behavior in a spatial task. These
results thus suggest that temporal learning led to formation
of an abstract representation of community that could
influence performance in distinct tasks.

Community Structure Biases Inferences about
Object Properties

We next tested whether temporal community structure
affects reasoning about object properties. To assess how
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temporal knowledge affects inductive inference, partici-
pants were told a property of a cue object (i.e., the environ-
ment in which it is found; Figure 2B) and asked which of
two other objects shares that property. On each trial, one
object was from the same community as the cue object,
and one object was from a different community. Based
on prior work (Pudhiyidath et al., 2019), we predicted that
participants would be biased to select the object that
shared the same community as the cue. Whereas prior
work focused on the overall tendency for community bias
(Pudhiyidath et al., 2019), here, we examined how bias var-
ied depending on whether the cue item was directly or
indirectly associated with each of the choice objects during
learning. This analysis strategy allowed us to contrast the
influence of different forms of temporal knowledge. Cen-
tral trials required selecting between an object that was
directly associated with the cue and an object that was indi-
rectly associated with the cue. On these trials, inference
decisions might be biased based on either knowledge of
the direct association between the cue and the same-
community object or knowledge that they shared the same
community. On the boundary 1-away trials, both objects

were directly associated with the cue object. We hypothe-
sized that the direct association between the cue and the
different-community object might reduce bias to select the
same-community object. In contrast, on the boundary 2-
away trials, neither object was directly associated with the
cue object. These trials allowed us to examine the degree
of same-community bias when object associations were
indirect and therefore had to be inferred.We hypothesized
that, if inference depended only on memory for direct
associations between objects, then there would be no bias
on the boundary 2-away trials. In contrast, if inference
depended on temporal community membership, then
inference would be biased on the boundary 2-away trials.

First, we tested whether bias changed over time during
the inference task; such a change might indicate that par-
ticipants learned about the environment associated with
each object during the inference task itself. A one-way
repeated-measures ANOVA found that bias did not vary
with trial bin (F(5,180) = 0.74, p = .594, η2p ¼ :020), con-
firming that temporal bias on the inference task reflected
knowledge acquired during the structure learning phase
rather than during the inference task itself. We next

Figure 4. Behavioral measures of community structure learning. (A) Parsing probability during sequence viewing. Sequences were either
Hamiltonian or random walks through the temporal community structure graph. Parsing occurred more frequently after transitions between
communities compared with other transitions. Points indicate individual participants; error bars indicate bootstrap 95% confidence intervals. (B) In
the grouping task, participants placed within-community objects nearer to one another than across-community objects. (C) Participants showed
evidence of a bias toward inferring the same properties for objects from the same communities. Positive scores indicate bias toward inferring
common properties of objects from the same community. (D) Parsing performance (i.e., event segmentation after community transitions relative to
segmentation after other transitions) predicted smaller distances between objects in the same community on the grouping task. Both measures were
residualized against rotation detection performance. Shaded area indicates 95% confidence intervals for the best-fitting linear regression. (E) Parsing
performance predicted temporal bias on the inference task. Both measures were residualized against rotation detection performance. *p < .05.
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compared bias in inference responses for the different trial
types (Figure 4C). Consistent with our predictions, responses
to central questions were significantly biased toward selec-
tion of within-community objects (t(36) = 3.97, p < .001,
FDR-BH corrected, d = 0.652). In contrast, responses to
boundary 1-away questions did not show bias toward one
type of choice versus the other, t(36) = − 0.18, p = .857,
FDR-BH corrected, d = 0.030, suggesting that the direct
association between the cue and the two choice items elim-
inated bias based on temporal community. Responses to
boundary 2-away questions were significantly biased toward
selecting the within-community objects (t(36) = 5.29,
p < .001, FDR-BH corrected, d = 0.869), suggesting that
participants did not rely solely on memory for direct associ-
ations, but were also biased by abstract knowledge about
the temporal community structure.

Using a one-way repeated-measures ANOVA, we found a
significant effect of Question Type (F(2,72) = 14.27,
p < .001, η2p ¼ :284). Follow-up t tests revealed significant
differences between central and boundary 1-away trials
(t(36) = 3.30, p = .003, d = 0.552), central and boundary
2-away trials (t(36)= 2.58,p= .015,d=0.534), and bound-
ary 1-away and boundary 2-away trials (t(36) = 4.74,
p < .001, d = 0.920). These results suggest that the rela-
tionship between the objects has an important impact on
inference of object properties. Furthermore, the bias
toward selecting within-community objects becomes
stronger when there was no direct connection between
the cue object and the object whose properties are being
inferred. These results suggest that statistical learning of
community structure biases decisions more when partici-
pants do not have direct experience upon which to draw.

Perception of Event Boundaries Correlates with
Object Clustering and Inference

We observed that participants perceived a change in the
object sequences when there was a shift fromone commu-
nity to another (Figure 4A), suggesting that participants
were sensitive to the community structure when segment-
ing events during the parsing task. We hypothesized
that participants’ ability to parse the communities would
predict individual differences in the two tasks that
required generalization of knowledge to new task
contexts—grouping and inductive inference. For each
participant, we calculated the difference in parsing proba-
bility between community transitions and other object
presentations to obtain an overall measure of parsing
performance. We then tested whether parsing behavior
correlated with spatial community clustering in the group-
ing task and temporal bias on the inference task (averaged
over trial type). In each regression analysis, we used partial
correlation to control for d0 during the rotation detection
task as a measure of how well each participant attended to
the object sequences during structure learning.

We observed a significant correlation between parsing
performance and within-community distance in the

grouping task (Figure 4D; r= − .628, p< .001) after con-
trolling for rotation detection performance. There was no
correlation between parsing performance and across-
community distance (r = .065, p = .705) after controlling
for rotation detection performance. This result is consis-
tent with our observation that across-community distance
varied substantially because of individual differences in the
placement of groups within the response grid (see
Methods section). As across-community distance was not
related to temporal knowledge, we focus on within-
community distance for subsequent analysis of the group-
ing task. We also observed a significant correlation
between parsing performance and temporal bias on the
inference task, after controlling for rotation detection per-
formance (Figure 4E; r = .336, p = .045). These results
suggest that the participants who were most knowledge-
able about the boundaries of the communities were
more likely to group communities together spatially after
learning and more likely to use their knowledge of the
temporal communities to make decisions about shared
object properties. Finally, we examined whether object
clustering in the grouping task was related to temporal bias
on the inference task, after controlling for rotation detec-
tion performance. We did not find evidence of a relation-
ship of temporal bias with within-community distance
(r = −.185, p = .282), suggesting that the grouping and
inference tasks might reflect somewhat distinct cognitive
processes.

Inference Decisions Depend on Both Transition
Statistics and Community Structure

To better understand how temporal community structure
learning biases inference decisions about object proper-
ties, we developed a model of statistical learning and
inference in our task. We found previously that inference
behavior may depend on both knowledge of direct associ-
ations between objects and knowledge of temporal
community membership. To examine these distinct influ-
ences on behavior, we compared models of temporal
knowledge at different levels of abstraction. We first mod-
eled statistical learning of object associations based on the
SR, which efficiently stores information about experienced
sequences of states (Momennejad, 2020; Momennejad
et al., 2017; Stachenfeld et al., 2017; Dayan, 1993). Given
some current state (here, a currently presented object),
the SR encodes a temporally discounted estimate of how
frequently other states (i.e., other objects) will be visited in
the future. Objects that are likely to be visited sooner will
be weighted more strongly, but objects that are indirectly
connected will also be represented as potential future
states. We simulated learning of an SR using temporal dif-
ference learning (Momennejad, 2020; Stachenfeld et al.,
2017). For each participant, the SR model was presented
with the object sequence viewed by that participant. For
each inference test trial, we took the current “state” as
the cue object and calculated the predicted temporally
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discounted frequency at which each of the two choice
objects would be visited from that cue object state
(Figure 5A). We assumed that the object with the higher
predicted frequency was more likely to be selected.
Whereas the SR reflects detailed information about

transition probabilities, we hypothesized that partici-
pants might also learn an abstract representation of the
objects that purely reflects their community membership
(Figure 5C). We assumed that, in this case, the cue would

support inference of shared properties with any objects in
the same community, but not objects from other commu-
nities. This model thus assumes that inference decisions
will not depend on whether objects were directly associ-
ated during learning, but instead only based on whether
they were in the same community as the cue object.

We first examined whether either the SR model or the
community membership model could account for the
temporal bias observed for the central, boundary 1-away,

Figure 5. Models of inductive inference task performance based on learned similarity of object pairs. (A–B) SR matrix and model fit to inference
behavior. (A) SR matrix after learning for one example participant (the same participant as in Figure 3) based on the object sequences that they
observed, with a learning rate of 0.1 and best-fitting discounting factor of 1.0. The matrix shows the expected temporally discounted frequency of
visiting each inference object after viewing the cue object. Circles indicate the object community (red, purple, green) and whether each object is a
central node (dark) or boundary node (light). (B) Fit of the SR model to average temporal bias for each inference test type. Bars show observed
performance (with bootstrap 95% confidence intervals); red dots show model estimates. The model incorrectly predicts that temporal bias should be
low on the boundary 2-away trials. (C–D) Within-community similarity model. (C) Model association matrix. Objects in the same community have a
similarity of one, and objects in different communities have a similarity of zero. (D) The model incorrectly predicts that there will be equal bias for
each trial type. (E–G) Hybrid SR-community model. The hybrid model simulates inference as being influenced by a weighted combination of SR and
within-community similarity. (E) SR matrix for the same example participant as in (A), with the best-fitting discounting factor of 0.974. (F) The hybrid
model correctly fits the differences in temporal bias between the trial types. (G) Based on the model fit, the central and boundary 1-away inference
trials weight the SR more heavily, whereas the boundary 2-away trials weight only the within-community similarity matrix. C = central; B1 =
boundary 1-away; B2 = boundary 2-away.
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and boundary 2-away trials. We found that the SR model
with best-fitting parameters (γ = 1.000, τ = 1.337) pro-
vided a reasonable fit to the central and boundary 1-away
trials, but incorrectly predicted that boundary 2-away ques-
tions should exhibit less temporal bias (Figure 5B). In con-
trast, the community membership model with best-fitting
parameters (τ = 2.655) incorrectly predicted that all infer-
ence trials should exhibit the same amount of temporal
bias, as the same-community object was always favored
regardless of how closely connected it or the other object
were to the cue object (Figure 5D).

Neither the SR or community membership models
could completely account for the pattern of bias on the
inference task. This finding is consistent with our behav-
ioral results, which suggest that the boundary 1-away
and boundary 2-away trials may rely on distinct forms of
temporal knowledge. Specifically, there was no bias when
both choices were directly associated with the cue
(boundary 1-away), suggesting that direct associations
influence inference behavior. In contrast, we observed
strong bias when neither choice as directly associated with
the cue (boundary 2-away), suggesting that participants
also learn about temporal community membership. We
therefore next examined whether a hybrid model using
both SR and community membership could fit perfor-
mance on the inference task. Inference decisions were
modeled as being based on a weighted combination of
SR and community membership. We estimated the
relative weight of the components separately for each
trial type. The hybrid model obtained a good fit to the
temporal bias observed for each of the inference trial types
(Figure 5C). We compared the fits for the SR, community,
and hybrid models to inference test performance, while
controlling for model complexity. We found that the
hybrid model performed the best overall (wAIC =
0.989, AIC = 2697.630), followed by the community
model (wAIC = 0.011, AIC = 2706.568) and the SR model
(wAIC = 0.00006, AIC = 2717.155). Examining the best-
fitting parameters of the hybrid model, we found that,
whereas the central trials and boundary 1-away trials
mostly relied on the SR, boundary 2-away trials exclusively
weighted community membership (Figure 5D; the other
best-fitting parameters were: γ = 0.974, τ = 1.392). In
both the central and boundary 1-away trials, responses
may be informed by direct experience, as the cue object
was directly connected to at least one of the choice
objects. In contrast, in boundary 2-away trials, participants
must choose between two objects that were never pre-
sented adjacent to the cue object (except rarely, during
the scrambled blocks of the scanning task; see
Figure 2B). On these trials, we found evidence that partic-
ipants instead make inference decisions based on the
more abstract knowledge of the temporal community
structure, resulting in a stronger temporal bias.

Our modeling results suggest that that the boundary
1-away and boundary 2-away trials are particularly distinct,
relying on an SR-like representation and a community-like

representation, respectively. Boundary 1-away responses
may depend on an SR-based mechanism, whereas
boundary 2-away responses may depend on a more
abstract representation of community structure.

Anterior Hippocampus Represents Temporal
Community Structure

Wenext examinedwhether exposure to temporal commu-
nity structure affects the neural representation of individ-
ual objects. A previous study observed that, after exposure
to temporal community structure, Hamiltonian sequences
of objects elicited activation patterns in IFG (Schapiro
et al., 2013) and hippocampus (Schapiro et al., 2016) that
weremore similar for objects in the same community. The
authors also observed that activation in IFG increased dur-
ing a series of transitions within a given community, sug-
gesting that the order in which the objects are presented
may affect brain activation in response to object presenta-
tions. In this study, we measured activation patterns of
each object in the scrambled blocks of the scanning task
(Figure 2A), allowing us to quantify object representations
in the absence of any predictable ordering. We tested
whether objects in the same community were represented
more similarly than objects in different communities, only
comparing patterns across different scanning runs to con-
trol for pattern correlations within runs (Mumford, Davis,
& Poldrack, 2014). We used separate searchlight analyses
to identify regions representing community structure,
looking within a priori ROIs of right and left hippocampus,
right and left IFG, andmPFC. Finally, a broader searchlight
analysis included all cortical and subcortical gray matter.
We found that activation patterns in right anterior

hippocampus were more correlated for objects in the
same community than objects in different communities
(Figure 6; p < .05, cluster-corrected within the volume
of the searchlight). The other searchlights did not reveal
any significant clusters ( p > .05, cluster-corrected). This
result extends prior work showing evidence of temporal
community structure representation in right anterior
hippocampus (Schapiro et al., 2016) by demonstrating
that object representations in hippocampus are sensi-
tive to temporal community structure even when object
presentation order is scrambled. In contrast to prior
work (Schapiro et al., 2013), we did not observe any sig-
nificant clusters in IFG. This difference may be because
of the lack of a predictable order to the presented
objects in the scrambled blocks, in contrast to the prior
study in which objects were presented in an order taken
from a Hamiltonian path through the temporal commu-
nity structure graph (Schapiro et al., 2013). This prior
study found that IFG activity increased over multiple
presentations within a community (Schapiro et al.,
2013), which would not generally happen in this study
because of the random order in which objects were
presented.
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Pattern Similarity in Perirhinal Cortex Predicts
Subjective Object Similarity

We next examined whether neural pattern similarity
predicted individual differences in the subjective simi-
larity of objects in the grouping task. Although prior
work found that neural representations reflect temporal
community structure (Schapiro et al., 2013, 2016), it
remains unclear whether these representations are
related to behavior. To characterize the functional sig-
nificance of neural community representations, we
examined whether the similarity contrast (within- minus
across-community similarity) for each participant was
correlated with within-community similarity from the
grouping task. The whole-brain searchlight revealed
that left perirhinal cortex was significantly correlated
with within-community distance in the grouping task
(Figure 7A). Searchlights within hippocampus, IFG, and
mPFC did not reveal any significant clusters ( p > .05,
cluster-corrected). These results suggest that, in partici-
pants who grouped together objects in the same com-
munity more closely during the grouping task, object
representations in perirhinal cortex reflected the tempo-
ral community structure. We propose that learning of
temporal community structure may shape high-level
object representations in perirhinal cortex, which may
then affect the subjective similarity of the objects, leading
to tighter clustering of within-community objects in the
grouping task.

Pattern Similarity in Precuneus and Hippocampus
Predicts Inference

We next examined whether neural pattern similarity is
related to individual differences in inference. We tested
whether within-community minus across-community sim-
ilarity was related to temporal bias on the inference task,
averaged over all trials for each participant. The whole-
brain searchlight revealed a region in left precuneus where
neural representation of object community structure pre-
dicted increased bias on the inference task (Figure 7B;
p < .05, cluster corrected). Searchlights within hippocam-
pus and IFG did not reveal any significant clusters ( p> .05,
cluster corrected). Our results suggest that presentation of
individual objects may result in activation of community-
specific representations in precuneus; these representa-
tions might subsequently influence decision-making when
participants are asked to inferwhich objects come from the
same environment. We next used a Bayesian regression
analysis to examine whether precuneus pattern similarity
was uniquely related to any specific inference test trial type.
This analysis allowed us to estimate the strength of relation-
ship of precuneus pattern similarity to each test trial type.
We found evidence of a positive relationship between pre-
cuneus pattern similarity difference and temporal bias on
the boundary 1-away trials (Figure 8A; slope 95% HDI:
[0.001, 0.032]).We did not find clear evidence of a relation-
ship on the central (slope 95% HDI: [−0.001, 0.044]) or
boundary 2-away trials (slope 95% HDI: [−0.021, 0.005]).

Figure 7. (A) A greater difference between within- and across-community similarity in left perirhinal cortex predicted smaller distance between same-
community objects in the grouping task. (B) Left precuneus showed a greater difference between within- and across-community similarity for
participants that were more biased by community structure on the inference task.

Figure 6. Right anterior
hippocampus similarity is
greater for objects in the
same community compared
with objects in different
communities.
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Although there were no significant clusters in hippo-
campus or perirhinal cortex in the inference temporal bias
searchlight, our behavioral and modeling results suggest
that the different inference tests may involve distinct
mechanisms. Therefore, we used a Bayesian regression
analysis to estimate the strength of the relationships
between bias on the individual inference trial types and
the hippocampal or perirhinal cortex community pattern
similarity. We found evidence of a positive relationship
between hippocampal pattern similarity differences and
temporal bias on the boundary 2-away trials (Figure 8B;
slope 95% HDI: [0.001, 0.022]). We did not find clear evi-
dence of a relationship on the central (slope 95% HDI:
[−0.028, 0.009]) or boundary 1-away (slope 95% HDI:
[−0.010, 0.015]) trials. We did not find clear evidence of
a relationship between perirhinal pattern similarity differ-
ences and temporal bias on the central (slope 95% HDI:
[−0.002, 0.021]), boundary 1-away (slope 95% HDI:
[−0.014, 0.003]), or boundary 2-away (slope 95%
HDI: [−0.001, 0.013]) trials. Overall, our results suggest
that pattern similarity in hippocampus and precuneus is
related to effects of temporal community structures on
inference decisions about object properties. Furthermore,
these relationships may be selective, with precuneus
related to performance on the boundary 1-away trials
and hippocampus related to performance on the bound-
ary 2-away trials.

DISCUSSION

Previous work found that exposure to temporal commu-
nity structure biases inductive inference (Pudhiyidath
et al., 2019), suggesting that knowledge of latent structure
affects reasoning about object properties. However, the
cognitive and neural mechanisms throughwhich temporal
statistical learning influences reasoning remained unclear.

Here, we found evidence that temporal community
structure affects both inference decisions about object
similarity and inductive inference decisions about object
properties. The fidelity of community structure represen-
tations in perirhinal cortex predicted the degree to which
objects were grouped by community, suggesting that
statistical learning may influence high-level object repre-
sentations, which then bias similarity judgments. We
found that temporal knowledge also biases inductive infer-
ence decisions about properties shared among different
objects. Using computational modeling, we found that
both detailed knowledge of temporal sequences and
abstract knowledge of temporal community structure
influence inductive inference decisions. These inductive
inference decisions may be supported by hippocampus
and precuneus, which represent the temporal community
membership of objects more coherently for participants
who exhibit stronger temporal bias during inductive
inference.
We first examined whether temporal community struc-

ture affected perception of object similarity by asking par-
ticipants to group the objects on a spatial grid. We found
that objects that had been in the same community during
learning were more likely to be grouped together. This
result demonstrates that knowledge of latent community
structure, which was originally learned through exposure
to temporal sequences, influences behavior in a nontem-
poral spatial grouping task. The influence of temporal
learning on object grouping may be driven by changes
to object representations in perirhinal cortex. Participants
who exhibited more coherent neural representations of
temporal community in perirhinal cortex after temporal
learning tended to group together objects in the same
community. Perirhinal cortex is situated at the apex of
the ventral visual processing stream (Miyashita, 2019;
Suzuki & Amaral, 1994), and in contrast to earlier visual

Figure 8. (A) Community structure in the left precuneus cluster was uniquely related to temporal bias on the boundary 1-away inference trials. (B)
Community structure in the right anterior hippocampus cluster was uniquely related to temporal bias on the boundary 2-away inference trials.
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areas, object representations in perirhinal cortex reflect
learned associations between objects (Schapiro et al.,
2012; Naya, Yoshida, & Miyashita, 2001; Sakai & Miyashita,
1991). Furthermore, perirhinal cortex is necessary for
reactivation of associated objects in earlier visual areas
(Miyashita, 2019; Higuchi &Miyashita, 1996) and has been
proposed to help support memory for associations
between items (Ranganath, 2010b; Mayes, Montaldi, &
Migo, 2007; Mayes et al., 2004; Yakovlev, Fusi, Berman,
& Zohary, 1998). Previous work found that object repre-
sentations in perirhinal cortex reflect temporal proximity
in a repeated sequence; objects nearer to one another had
more similar representations after learning (Miyashita,
1988). Our results further suggest that object representa-
tions in perirhinal cortex are also sensitive to latent com-
munity structure. The formation of associations between
items based on shared temporal context, as we observed
here, has been proposed to be a key mechanism for learn-
ing about semantic relationships (Howard, Shankar, &
Jagadisan, 2011; Landauer & Dumais, 1997). Previous
work suggests that neural representations in perirhinal
cortex reflect semantic associations, which may help to
disambiguate objects that are visually similar (Martin,
Douglas, Newsome, Man, & Barense, 2018; Barense,
Rogers, Bussey, Saksida, & Graham, 2010). Taken together
with prior studies, our results suggest that learning of
latent community structure may facilitate disambiguation
of objects in perirhinal cortex based on their associated
context. The representational differences among objects
in different communities may then influence decisions
about the subjective grouping of the objects.
In addition to influencing judgments of object similarity,

temporal community structure biased inductive inference
about object properties. This bias was greater for partici-
pants who exhibited consistent parsing at transitions
between communities, suggesting that formation of
temporal knowledge during sequence viewing caused bias
based on temporal associations during inductive infer-
ence. Our results confirm prior findings that temporal
community structure learning leads to biased inductive
inference (Pudhiyidath et al., 2019). Critically, however,
we found that the bias toward inferring shared properties
among objects in the same community was strongest
when participants had not learned any direct associations
between the cue and either choice object (i.e., on bound-
ary 2-away trials). In contrast, when both choice objects
had been directly associated with the cue object (i.e., on
boundary 1-away trials), there was no bias to select the
object from the same community.
Using computational modeling, we found that this pat-

tern of results could be explained if inductive inference
decisions were based on a combination of knowledge
about object transition probabilities, as encoded in an SR
(Momennejad et al., 2017; Stachenfeld et al., 2017; Dayan,
1993) and an abstract low-dimensional representation of
community membership. The SR has been proposed to
support discovery of clusters (here, object communities)

within states (here, the objects; Momennejad, 2020;
Stachenfeld et al., 2017), suggesting that an SR-like learn-
ing mechanism may support formation of both predictive
representations of transition statistics and abstract repre-
sentations of community membership. Our modeling
results suggest that abstract community representations
only influence inductive inference behavior when there
are no direct associations between the cue and the objects
being considered. This shift in emphasis may be adaptive,
focusing on direct experience when possible, and only
relying on inferred latent structure when direct experience
is not available. Our results are consistent with theoretical
work suggesting that the temporal features of experience
support inference about latent causes (Gershman et al.,
2017). Latent cause inference has been proposed to be a
critical mechanism for organizing memory, as it may allow
individual experiences to be connected to detailed
schemas that can guide reasoning (Varga et al., in press).

Ourmodeling results are consistent with the hypothesis
that inductive inference is influenced, in part, by predic-
tive representations of temporal relationships between
objects. An alternative model of inductive inference,
however, could posit that object properties are instead
generalized from a given cue object to objects that tended
to precede the cue object during learning. Such a mecha-
nism would be consistent with temporal context models,
which propose that presented items become associated
with a contextual trace that represents recently presented
items (Gershman et al., 2012; Howard & Kahana, 2002).
Because the community structure graph in this study
was bidirectional, these different models of inference
would likely give similar predictions for behavior in the
inductive inference task. To help clarify further how induc-
tive inference is influenced by temporal experience, a
future study could present participants with object
sequences following a directional graph. An inductive
inference task could then be used to examine whether
object properties are inferred to be shared with preceding
objects, predicted upcoming objects, or both. Regardless
of the directionality of the temporal associations that
influence inference behavior, however, our results suggest
that inductive inference behavior is sensitive to both the
community membership of the objects and the temporal
distance between the objects during learning.

We found evidence that inductive inference based on
latent community structure is supported by neural repre-
sentations of community structure in the hippocampus.
The hippocampus has previously been implicated in sup-
porting statistical learning (Covington et al., 2018;
Schlichting et al., 2017; Schapiro et al., 2013), potentially
by forming SR-like predictions of upcoming states
(Stachenfeld et al., 2017). The hippocampus is also
thought to support binding of items with their associated
contexts (Ranganath, 2010a; Tort, Komorowski, Manns,
Kopell, & Eichenbaum, 2009). Here, our data suggest that
the hippocampus forms associations between objects and
their latent community context. We reproduced prior
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results finding community representations in right ante-
rior hippocampus (Schapiro et al., 2016), and further
found that this property persists when objects are not pre-
sented in a predictable order. Hippocampal representa-
tions of community membership are thus activated in
response to individual objects rather than only appearing
during structured temporal sequences drawn from the
temporal community structure graph. Hippocampus has
also been proposed to integrate indirectly related items
(Molitor, Sherrill, Morton, Miller, & Preston, 2021;
Schlichting et al., 2015); this mechanism of memory inte-
gration has been proposed to serve a critical role in deduc-
tive inference based on indirect associations (Varga et al.,
in press; Molitor et al., 2021; Schlichting & Preston, 2015;
Bunsey & Eichenbaum, 1996). Consistent with the
hypothesized role of hippocampus in supporting infer-
ence based on indirect associations, we found that the
strength of temporal community structure representations
in hippocampus was uniquely related to biased inference
on the boundary 2-away trials, which required making deci-
sions based on indirect associations. Integrative representa-
tions in hippocampus have previously been linked to
deductive inference (i.e., given learned pairings of AB and
BC items, A and C are also associated; Molitor et al., 2021).
Here, we find that hippocampal representations also predict
inductive inference decisions, wherein a decision cannot be
deduced from existing knowledge and must instead be
extrapolatedbasedon abstract knowledgeof latent structure.

We found that neural representations of community
structure in precuneus were also related to bias in the
inductive inference task. The precuneus has previously
been found to be involved in encoding and retrieving con-
textual associations (Sreekumar, Nielson, Smith, Dennis,
& Sederberg, 2018; Frings et al., 2006; Wagner, Shannon,
Kahn, & Buckner, 2005) and representing latent structure
(Vaidya, Jones, Castillo, & Badre, 2021; Baldassano,
Hasson, & Norman, 2018; Baldassano et al., 2017), suggest-
ing that it may be involved in representing the community
associated with each object. Furthermore, precuneus is
activated during decisions about whether two objects are
often found in the same context (e.g., a washer and a laun-
dry hamper) or not (e.g., a microscope and a toy horse),
and activation is greater when the pair of objects is related
(Livne & Bar, 2016). The precuneus may similarly be
recruited during inductive inference to determine
whether two objects are associated with the same commu-
nity and thusmight share some of the same properties. We
also found initial evidence that the precuneus may be
selectively predictive of inductive inference decisions
when items were directly associated during learning.
Our modeling results suggest that these inductive infer-
ence decisions were driven by detailed temporal knowl-
edge. Taken together, the neural and modeling results
suggest that precuneus may support inductive inference
decisions based on detailed temporal knowledge of
object associations. Presentation of a cue object during
the inductive inference task might trigger reactivation

of associated latent task structure in precuneus. Repre-
sentations of latent structure might then bias inductive
inference decisions to favor generalization to objects that
are associated within that latent structure.
In conclusion, we found that learning about statistical

temporal associations influences both inference decisions
about object relationships and inductive inference deci-
sions about shared object properties. Reasoning decisions
that require inductive inference appear to reflect retrieval
of both temporal associations between objects, whichmay
be supported by precuneus, and abstract community struc-
ture, which may be supported by hippocampus. Inference
about latent causes, such as shared associations and tempo-
ral community structure, has been proposed to be a critical
organizational feature of memory (Gershman et al., 2017).
Our results suggest that latent cause inference may be
influenced bymultiple features of experience that compete
to determine memory-based reasoning behavior.
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Diversity in Citation Practices

Retrospective analysis of the citations in every article pub-
lished in this journal from 2010 to 2021 reveals a persistent
pattern of gender imbalance: Although the proportions of
authorship teams (categorized by estimated gender iden-
tification of first author/last author) publishing in the Jour-
nal of Cognitive Neuroscience ( JoCN) during this period
were M(an)/M = .407, W(oman)/M = .32, M/W = .115,
and W/W = .159, the comparable proportions for the arti-
cles that these authorship teams cited were M/M = .549,
W/M = .257, M/W = .109, and W/W = .085 (Postle and
Fulvio, JoCN, 34:1, pp. 1–3). Consequently, JoCN encour-
ages all authors to consider gender balance explicitly when
selecting which articles to cite and gives them the oppor-
tunity to report their article’s gender citation balance. The
authors of this article report its proportions of citations by
gender category to be as follows: M/M= .667;W/M= .145;
M/W = .101; W/W = .087.
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